Scaling behavior of explosive percolation on the square lattice

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scaling behavior of diffusion on percolation clusters

A scaling analysis is performed on Monte Carlo simulations of random walks on percolation clusters both above and belo~ the threshoM p, . The average difTusion constant is described by a single scaling function in which the crossover from an algebraic decay (in time) near p, to the asymptotic behavior above or below it occurs at time t«»s « I p —p, ~ t~" S+~~. The value of the percolation condu...

متن کامل

Temporally Disordered Bond Percolation on the Directed Square Lattice.

Simple models of directed bond percolation with temporal disorder are introduced and studied via series expansions and Monte Carlo simulations. Series have been derived for the percolation probability on the directed square lattice. Analysis of the series revealed that the critical exponent b and critical point pc change continuously with the strength of the disorder. Monte Carlo simulation con...

متن کامل

On AB bond percolation on the square lattice and AB site percolation on its line graph

We prove that AB site percolation occurs on the line graph of the square lattice when p ∈ (1− √ 1− pc, √ 1− pc), where pc is the critical probability for site percolation in Z. Also, we prove that AB bond percolation does not occur on Z for p = 1 2 .

متن کامل

Finite-size scaling theory for explosive percolation transitions.

The finite-size scaling (FSS) theory for continuous phase transitions has been useful in determining the critical behavior from the size-dependent behaviors of thermodynamic quantities. When the phase transition is discontinuous, however, FSS approach has not been well established yet. Here, we develop a FSS theory for the explosive percolation transition arising in the Erdős and Rényi model un...

متن کامل

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review E

سال: 2010

ISSN: 1539-3755,1550-2376

DOI: 10.1103/physreve.82.051105